Adaptive Iterated Shrinkage Thresholding-Based Lp-Norm Sparse Representation for Hyperspectral Imagery Target Detection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery

With increasing applications of hyperspectral imagery (HSI) in agriculture, mineralogy, military and other fields, one of the fundamental tasks is accurate detection of target of interest. In this paper, improved sparse representation approaches using adaptive spatial support are proposed for effective target detection in HSI. For conventional sparse representation, a HSI pixel is represented a...

متن کامل

Adaptive Subspace Target Detection in Hyperspectral Imagery

* Corresponding author. Abstract –Adaptive subspace detectors are widely used for low probability and anomaly detection. The complex remote sensing conditions in which hyperspectral imagery is obtained make the detector performance evaluation a non-trivial task. Many of the detector design parameters can only be studied empirically for their effects on detection performance. In this paper, hype...

متن کامل

Combined sparse and collaborative representation for hyperspectral target detection

A novel algorithm that combines sparse and collaborative representation is proposed for target detection in hyperspectral imagery. Target detection is achieved by the representation of a testing pixel using a target library and a background library. Due to the fact that sparse representation encourages competition among atoms while collaborative representation tends to use all the atoms, the te...

متن کامل

Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation

Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0<p<1), which can be employed to obtain a sparser solution than the L₁ regularization. Recently, the multiple-state sparse transformation strategy has been developed to exploit the sparsity in L₁ regularization for sparse signal recovery, which combines the iterative reweighted algorithms. To further exploit the sparse structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2020

ISSN: 2072-4292

DOI: 10.3390/rs12233991